jueves, 10 de enero de 2008

SISTEMA BINARIO

El sistema binario, en matemáticas, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1).

Los ordenadores trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).

Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que a su vez pueden ser representados por cualquier mecanismo capaz de estar en dos estados mutuamente exclusivos. Las secuencias siguientes de símbolos podrían ser interpretadas todas como el mismo valor binario numérico:

1 0 1 0 0 1 1 0 1 0
| - | - - | | - | -
x o x o o x x o x o
y n y n n y y n y n

Operaciones con números binarios

Suma de números Binarios

Las posibles combinaciones al sumar dos bits son

  • 0 + 0 = 0
  • 0 + 1 = 1
  • 1 + 0 = 1
  • 1 + 1 = 10

      100110101
+ 11010101
———————————
1000001010

Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas la columnas (exactamente como en decimal).

Resta de números binarios

El algoritmo de la resta en binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.

Las restas básicas 0-0, 1-0 y 1-1 son evidentes:

  • 0 - 0 = 0
  • 1 - 0 = 1
  • 1 - 1 = 0
  • 0 - 1 = 1, con 1 de préstamo

La resta 0 - 1 se resuelve, igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 10 - 1 = 1 y me llevo 1, lo que equivale a decir en decimal, 2 - 1 = 1. Esa unidad prestada debe devolverse, sumándola, a la posición siguiente. Veamos algunos ejemplos:

Restamos 17 - 10 = 7 (2=345)          Restamos 217 - 171 = 46 (3=690)
10001 11011001
-01010 -10101011
—————— —————————
00111 00101110

A pesar de lo sencillo que es el procedimiento, es fácil confundirse. Tenemos interiorizado el sistema decimal y hemos aprendido a restar mecánicamente, sin detenernos a pensar en el significado del arrastre. Para simplificar las restas y reducir la posibilidad de cometer errores hay varias soluciones:

  • Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas:
        100110011101             1001     1001     1101
-010101110010 -0101 -0111 -0010
————————————— = ————— ————— —————
010000101011 0100 0010 1011
  • Utilizando el complemento a dos. La resta de dos números binarios puede obtenerse sumando al minuendo el complemento a dos del sustraendo. Veamos algunos ejemplos. Hagamos la siguiente resta, 91 - 46 = 45, en binario:
        1011011                                             1011011
-0101110 C2 de 46 = 1010010 +1010010
———————— ————————
0101101 10101101

En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia.

Un último ejemplo: vamos a restar 219 - 23 = 196, directamente y utilizando el complemento a dos:

        11011011                                            11011011
-00010111 C2 de 23 = 11101001 +11101001
————————— —————————
11000100 111000100

Y, despreciando el bit que se desborda por la izquierda, llegamos al resultado correcto: 11000100 en binario, 196 en decimal.


  • Utilizando el complemento a 1. La resta de dos números binarios puede obtenerse sumando al minuendo el complemento a uno del sustraendo y a su vez sumarle el bit de overflow (bit que se desborda).

Producto de números binarios

El algoritmo del producto en binario es igual que en números decimales; aunque se lleva cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.

Por ejemplo, multipliquemos 10110 por 1001:

        10110      
1001
—————————
10110
00000
00000
10110
—————————
11000110

En sistemas electrónicos, donde se suelen utilizar números mayores, no se utiliza este método sino otro llamado algoritmo de Booth.

División de números binarios

La división en binario es similar a la decimal, la única diferencia es que a la hora de hacer las restas, dentro de la división, estas deben ser realizadas en binario. Por ejemplo, vamos a dividir 100010010 (274) entre 1101 (13):

 100010010 |1101
——————
- 0000 010101
———————
10001
- 1101
———————
01000
- 0000
———————
10000
- 1101
———————
00111
- 0000
———————
01110
- 1101
———————
00001


Conversión entre binarios y decimales, binario a octal y de binario a hexadecimal

Binario a decimal

Para realizar la conversión de binario a decimal, realice lo siguiente:

  1. Inicie por el lado derecho del número en binario, cada número multiplíquelo por 2 y elévelo a la potencia consecutiva (comenzando por la potencia 0).
  2. Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.

Ejemplos:

  • 110101 (binario) = 53 (decimal). Proceso:
1*(2) elevado a (0)=1 0*(2) elevado a (1)=0 1*(2) elevado a (2)=4 0*(2) elevado a (3)=0 1*(2) elevado a (4)=16 1*(2) elevado a (5)=32 La suma es: 53
  • 10010111 (binario) = 151 (decimal). Proceso:
1*(2) elevado a (0)=1 1*(2) elevado a (1)=2 1*(2) elevado a (2)=4 0*(2) elevado a (3)=0 1*(2) elevado a (4)=16 0*(2) elevado a (5)=0 0*(2) elevado a (6)=0 1*(2) elevado a (7)=128 La suma es: 151
  • 110111 (binario) = 55 (decimal). Proceso:
1*(2) elevado a (0)=1 1*(2) elevado a (1)=2 1*(2) elevado a (2)=4 0*(2) elevado a (3)=0 1*(2) elevado a (4)=16 1*(2) elevado a (5)=32 La suma es: 55

Decimal a binario

Se divide el número decimal entre 2 cuyo resultado entero se vuelve a dividir entre 2 y así sucesivamente. Una vez llegados al 1 indivisible se cuentan el último cociente, es decir el uno final (todo número binario excepto el 0 empieza por uno), seguido de los residuos de las divisiones subsiguientes. Del más reciente hasta el primero que resultó. Este número será el binario que buscamos. A continuación se puede ver un ejemplo con el número decimal 100 pasado a binario.

100 |_2 0 50 |_2 0 25 |_2 --> 100 \Rightarrow 1100100 1 12 |_2 0 6 |_2 0 3 |_2 1 1


Otra forma de conversión consiste en un método parecido a la factorización en números primos. Es relativamente fácil dividir cualquier número entre 2. Este método consiste también en divisiones sucesivas. Dependiendo de si el número es par o impar, colocaremos un cero o un uno en la columna de la derecha. Si es impar, le restaremos uno y seguiremos dividiendo por dos, hasta llegar a 1. Después sólo nos queda tomar el último resultado de la columna izquierda (que siempre será 1) y todos los de la columna de la derecha y ordenar los dígitos de abajo a arriba. Y luego se haría un cuadro con las potencias con el resultado.

Ejemplo:

100|0 50|0 25|1 --> 1, 25-1=24 y seguimos dividiendo por 2 12|0 6|0 3|1 1|1 --> 100 \Rightarrow 1100100

Y también tenemos otro método el método de distribución en el que distribuimos el número decimal y podemos tener el resultado en binario, trabaja de la siguiente manera tenemos el número 151 lo que tenemos que hacer es distribuir este número buscando el número más próximo; en este caso es 128 así que en la casilla donde hay capacidad de contener el número que tenemos lo vamos marcando. y en las casillas que no empleamos las marcaremos con un 0.

Ejemplo:

2^0= 1|1 2^1= 2|1 2^2= 4|1 2^3= 8|0 2^4= 16|1 2^5= 32|0 2^6= 64|0 2^7= 128|1 128+16+4+2+1=151 2^8= 256|0

Y sucesivos.

Binario a octal

Para realizar la conversión de binario a octal, realice lo siguiente:

1) Agrupe la cantidad binaria en grupos de 3 en 3 iniciando por el lado derecho. Si al terminar de agrupar no completa 3 dígitos, entonces agregue ceros a la izquierda.

2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:

Número en binario 000 001 010 011 100 101 110 111
Número en octal 0 1 2 3 4 5 6 7

3) La cantidad correspondiente en octal se agrupa de izquierda a derecha.

Ejemplos:

  • 110111 (binario) = 67 (octal). Proceso:
111 = 7 110 = 6 Agrupe de izquierda a derecha: 67
  • 11001111 (binario) = 317 (octal). Proceso:
111 = 7 001 = 1 11 entonces agregue un cero, con lo que se obtiene 011 = 3 Agrupe de izquierda a derecha: 317
  • 1000011 (binario) = 103 (octal). Proceso:
011 = 3 000 = 0 1 entonces agregue 001 = 1 Agrupe de izquierda a derecha: 103.

Octal a binario [editar]

Cada dígito octal se lo convierte en su binario equivalente de 3 bits y se juntan en el mismo orden. Ejemplo:

  • 247 (octal) = 010100111 (binario). El 2 en binario es 10, pero en binario de 3 bits es Oc(2) = B(010); el Oc(4) = B(100) y el Oc(7) = (111), luego el número en binario será 010100111.

Binario a hexadecimal

Para realizar la conversión de binario a hexadecimal, realice lo siguiente:

1) Agrupe la cantidad binaria en grupos de 4 en 4 iniciando por el lado derecho. Si al terminar de agrupar no completa 4 dígitos, entonces agregue ceros a la izquierda.

2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:

Número en binario 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Número en hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

3) La cantidad correspondiente en hexadecimal se agrupa de izquierda a derecha.

Ejemplos:

  • 110111010 (binario) = 1BA (hexadecimal). Proceso:
1010 = A 1011 = B 1 entonces agregue 0001 = 1 Agrupe de izquierda a derecha: 1BA
  • 11011110101 (binario) = 6F5 (hexadecimal). Proceso:
0101 = 5 1111 = F 110 entonces agregue 0110 = 6 Agrupe de izquierda a derercha: 6F5

Hexadecimal a binario

Ídem que para pasar de hexadecimal a binario, solo que se remplaza por el equivalente de 4 bits, como de octal a binario.

Tabla de conversión entre decimal, binario, hexadecimal, octal, BCD, Exceso 3 y Gray o Reflejado [editar]

Decimal Binario Hexadecimal Octal BCD Exceso 3 Gray o Reflejado
0 0000 0 0 0000 0011 0000
1 0001 1 1 0001 0100 0001
2 0010 2 2 0010 0101 0011
3 0011 3 3 0011 0110 0010
4 0100 4 4 0100 0111 0110
5 0101 5 5 0101 1000 0111
6 0110 6 6 0110 1001 0101
7 0111 7 7 0111 1010 0100
8 1000 8 10 1000 1011 1100
9 1001 9 11 1001 1100 1101
10 1010 A 12


11 1011 B 13


12 1100 C 14


13 1101 D 15


14 1110 E 16


15 1111 F 17




No hay comentarios: